许多注册方法都存在着早期工作,重点是基于优化的图像对方法。最近的工作着重于深度注册网络,以预测空间转换。在这两种情况下,通常使用的非参数登记模型,该模型估计转换功能而不是低维转换参数,都需要选择合适的正常器(鼓励平滑转换)及其参数。这使得模型难以调整,并将变形限制为所选正规器允许的变形空间。尽管存在不正常转换的光流的深度学习模型,而是完全依赖于数据,这些模型可能不会产生对医学图像注册期望的差异转换。因此,在这项工作中,我们在无监督的图标深度学习登记方法上开发了Gradicon,该方法仅使用逆矛盾进行正则化。但是,与图标相反,我们证明并从经验上验证,使用梯度反矛盾损失不仅显着改善了收敛性,而且还会导致所得转换图的类似隐式正则化。磁共振(MR)膝关节图像和计算机断层扫描(CT)肺图像的合成实验和实验表明Gradicon的表现出色。我们在保留简单的注册公式的同时,实现了最新的(SOTA)精度,这实际上很重要。
translated by 谷歌翻译
This letter focuses on the task of Multi-Target Multi-Camera vehicle tracking. We propose to associate single-camera trajectories into multi-camera global trajectories by training a Graph Convolutional Network. Our approach simultaneously processes all cameras providing a global solution, and it is also robust to large cameras unsynchronizations. Furthermore, we design a new loss function to deal with class imbalance. Our proposal outperforms the related work showing better generalization and without requiring ad-hoc manual annotations or thresholds, unlike compared approaches.
translated by 谷歌翻译
在本文中,我们使用艺术技术的神经语言模型(NLMS)在科学文献中的应用来解决从开放词汇知识库(Openkbs)的推理任务。为此目的,使用常见的Sense KB作为源任务,使用常见的Sense KB训练基于自我关注的NLM。然后在目标KB上测试NLMS,用于开放的词汇推理任务,涉及与最普遍的慢性疾病相关的科学知识(也称为非传染性疾病,NCD)。我们的结果确定了NLM,其始终如一地执行,并且在知识推断中对源代码和目标任务的重要性。此外,在我们通过检查的分析中,我们讨论了模型学到的语义规律和推理能力,同时表现出对我们援助NCD研究的方法的潜在好处的第一洞察力。
translated by 谷歌翻译
本文介绍了Planminer-N算法,基于Planminer域学习算法的域学习技术。此处呈现的算法在使用噪声数据作为输入时,提高了Planminer的学习能力。 Planminer算法能够推断出算术和逻辑表达式以从输入数据学习数值规划域,但它旨在在面对噪声输入数据时不可靠的情况下工作。在本文中,我们向Planminer的学习过程提出了一系列增强,以扩展其从嘈杂数据中学习的能力。这些方法通过检测噪声和过滤它并研究学习的学习动作模型来预处理输入数据,以便在它们中找到错误的前提条件/效果。使用来自国际规划竞赛(IPC)的一组域来测试本文提出的方法。取得的结果表明,在面对嘈杂的输入数据时,Planminer-N大大提高了Planminer的性能。
translated by 谷歌翻译
In this work a novel recommender system (RS) for Tourism is presented. The RS is context aware as is now the rule in the state-of-the-art for recommender systems and works on top of a tourism ontology which is used to group the different items being offered. The presented RS mixes different types of recommenders creating an ensemble which changes on the basis of the RS's maturity. Starting from simple content-based recommendations and iteratively adding popularity, demographic and collaborative filtering methods as rating density and user cardinality increases. The result is a RS that mutates during its lifetime and uses a tourism ontology and natural language processing (NLP) to correctly bin the items to specific item categories and meta categories in the ontology. This item classification facilitates the association between user preferences and items, as well as allowing to better classify and group the items being offered, which in turn is particularly useful for context-aware filtering.
translated by 谷歌翻译
Detecting anomalous data within time series is a very relevant task in pattern recognition and machine learning, with many possible applications that range from disease prevention in medicine, e.g., detecting early alterations of the health status before it can clearly be defined as "illness" up to monitoring industrial plants. Regarding this latter application, detecting anomalies in an industrial plant's status firstly prevents serious damages that would require a long interruption of the production process. Secondly, it permits optimal scheduling of maintenance interventions by limiting them to urgent situations. At the same time, they typically follow a fixed prudential schedule according to which components are substituted well before the end of their expected lifetime. This paper describes a case study regarding the monitoring of the status of Laser-guided Vehicles (LGVs) batteries, on which we worked as our contribution to project SUPER (Supercomputing Unified Platform, Emilia Romagna) aimed at establishing and demonstrating a regional High-Performance Computing platform that is going to represent the main Italian supercomputing environment for both computing power and data volume.
translated by 谷歌翻译
Neural style transfer is a deep learning technique that produces an unprecedentedly rich style transfer from a style image to a content image and is particularly impressive when it comes to transferring style from a painting to an image. It was originally achieved by solving an optimization problem to match the global style statistics of the style image while preserving the local geometric features of the content image. The two main drawbacks of this original approach is that it is computationally expensive and that the resolution of the output images is limited by high GPU memory requirements. Many solutions have been proposed to both accelerate neural style transfer and increase its resolution, but they all compromise the quality of the produced images. Indeed, transferring the style of a painting is a complex task involving features at different scales, from the color palette and compositional style to the fine brushstrokes and texture of the canvas. This paper provides a solution to solve the original global optimization for ultra-high resolution images, enabling multiscale style transfer at unprecedented image sizes. This is achieved by spatially localizing the computation of each forward and backward passes through the VGG network. Extensive qualitative and quantitative comparisons show that our method produces a style transfer of unmatched quality for such high resolution painting styles.
translated by 谷歌翻译
Artificial intelligence (AI) in the form of deep learning bears promise for drug discovery and chemical biology, $\textit{e.g.}$, to predict protein structure and molecular bioactivity, plan organic synthesis, and design molecules $\textit{de novo}$. While most of the deep learning efforts in drug discovery have focused on ligand-based approaches, structure-based drug discovery has the potential to tackle unsolved challenges, such as affinity prediction for unexplored protein targets, binding-mechanism elucidation, and the rationalization of related chemical kinetic properties. Advances in deep learning methodologies and the availability of accurate predictions for protein tertiary structure advocate for a $\textit{renaissance}$ in structure-based approaches for drug discovery guided by AI. This review summarizes the most prominent algorithmic concepts in structure-based deep learning for drug discovery, and forecasts opportunities, applications, and challenges ahead.
translated by 谷歌翻译
This work presents a set of neural network (NN) models specifically designed for accurate and efficient fluid dynamics forecasting. In this work, we show how neural networks training can be improved by reducing data complexity through a modal decomposition technique called higher order dynamic mode decomposition (HODMD), which identifies the main structures inside flow dynamics and reconstructs the original flow using only these main structures. This reconstruction has the same number of samples and spatial dimension as the original flow, but with a less complex dynamics and preserving its main features. We also show the low computational cost required by the proposed NN models, both in their training and inference phases. The core idea of this work is to test the limits of applicability of deep learning models to data forecasting in complex fluid dynamics problems. Generalization capabilities of the models are demonstrated by using the same neural network architectures to forecast the future dynamics of four different multi-phase flows. Data sets used to train and test these deep learning models come from Direct Numerical Simulations (DNS) of these flows.
translated by 谷歌翻译
Network models are an essential block of modern networks. For example, they are widely used in network planning and optimization. However, as networks increase in scale and complexity, some models present limitations, such as the assumption of markovian traffic in queuing theory models, or the high computational cost of network simulators. Recent advances in machine learning, such as Graph Neural Networks (GNN), are enabling a new generation of network models that are data-driven and can learn complex non-linear behaviors. In this paper, we present RouteNet-Fermi, a custom GNN model that shares the same goals as queuing theory, while being considerably more accurate in the presence of realistic traffic models. The proposed model predicts accurately the delay, jitter, and loss in networks. We have tested RouteNet-Fermi in networks of increasing size (up to 300 nodes), including samples with mixed traffic profiles -- e.g., with complex non-markovian models -- and arbitrary routing and queue scheduling configurations. Our experimental results show that RouteNet-Fermi achieves similar accuracy as computationally-expensive packet-level simulators and it is able to accurately scale to large networks. For example, the model produces delay estimates with a mean relative error of 6.24% when applied to a test dataset with 1,000 samples, including network topologies one order of magnitude larger than those seen during training.
translated by 谷歌翻译